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4.4. Scale-selective polarimetry of the birefringence 

distribution of myocardium tissue�
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4.4.1. Introduction 

In the series of research works the possibility of polarimetry 

diagnostic [1-19] of optically anisotropic layers of biological tissues [20-

22] and fluids [23-29] is demonstrated.  

This research aims to study fundamental potentiality of the new Stokes-

polarimetry approach to polarization-correlation mapping of microscopic 

images of ischemic heart disease and acute coronary insufficiency died 

patients myocardial tissue. 

 

4.4.2. Theory of the method 

T.Setala, Ya.Tervo and A.T.Friberg [30,31] proposed to describe the 

correlation structure of the stationary distributions of the fields of complex 

amplitudes of laser light converted by optically anisotropic biological 

layers, one can use the following mutual spectral density matrix 

 

 yxjirErErrW jiji ,,),()(),( 2121, �E� �                        (4.4.1) 

 

Here 1r  and 2r  - the coordinates of the neighboring points in the field 

of laser radiation. 

In the approximation of weak phase fluctuations using relations 

(4.4.1) we obtained the following expressions for to calculate the 
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polarization parameters that characterize the birefringence of small-scale 

structures of the myocardium 
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It follows from the analysis of the obtained relations (4.4.2) - (4.4.4) 

that the SCP modulus 
 �yxSi ��� ,4;3;2;1  carries information about the 

orientation structure 
 �yx,�  of polycrystalline networks and structures. The 

SCP phase 
 �
 �yxSArg i ��� ,4;3;2;1  carries information about their birefringence 

( 
 �yx,� ). 
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4.4.3. Materials and methods 

Measurement of the coordinate distributions of the values of 


 � 
 �
 �yxSArgyxS ii ���� �� ;;; 33  and 
 � 
 �
 �yxSArgyxS ii ���� �� ;;; 44  was carried out 

in the experimental arrangement of Stokes-polarimeter [9,13,17]. 

 

4.4.4. Brief description of the research objects 

Optically thin (attenuation coefficient 01.0�� ) samples of histological 

sections (geometrical thickness mml �� 3025 ��  0099.00093.0 33� ) of 

myocardium biological tissues of internals of two statistically significant 

(37 samples each) groups. 

Histological sections of biological tissues of rat(s internal were produced 

by the standard technique in freezing microtome. 

 

4.4.5. Experimental results and discussion 

In the series of Fig. 4.4.1 - Fig. 4.4.4 is shown  the cross-correlation 

functions of the coordinate distributions of the modulus (Fig.4.4.1, 

Fig.4.4.2) and the phases (Fig.4.4.3, Fig.4.4.4) of the polarization-

correlation parameters of the Stokes vector  images of the histological 

sections of the myocardium with  IHD (Fig. 4.4.1, Fig. 4.4.3) and ACI (Fig. 

4.4.2, Fig. 4.4.4). 
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Fig. 4.4.1. Cross-correlation functions of polarization parameters 

modulus of the myocardium with IHD histological section image 

 

Fig. 4.4.2. Cross-correlation functions of polarization parameters 

modulus of the myocardium with ACI histological section image 
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Fig. 4.4.3. Cross-correlation functions of polarization parameters 

phase of the myocardium with IHD histological section image  

 

Fig. 4.4.4. Cross-correlation functions of polarization parameters 

phase of the myocardium with ACI histological section image  
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The potentiality of Stokes-correlometry differentiation of the two groups of 

myocardium samples is quantitatively illustrated by the data presented in 

Table 4.4.1 and Table 4.4.2. 

 

Table 4.4.��� �����#������ � ����!������ ��� 45.� !��-#-�� !���� ���

polarization-inhomogeneous images of histological sections of 

myocardium 

Parameters 
 �yxSi ��� ,3  
 �yxSi ��� ,4  

Condition IHD  


 �39�n  

ACI 


 �39�n  

IHD  


 �39�n  

ACI 


 �39�n  

kZ 2  0,077, 0,0052 0,13, 0,0092 0,065, 0,0053 0,093, 0,0072 

kZ 4  2,34, 0,19 0,92, 0,073 1,68, 0,15 0,89, 0,063 

 

Table 4.4.2. Correlation parameters of SCP phase maps of 

polarization-inhomogeneous images of histological sections of 

myocardium 

Parameters 
 �
 �yxSArg i ��� ;3  
 �
 �yxSArg i ��� ;4  

Condition IHD  


 �39�n  

ACI 


 �39�n  

IHD  


 �39�n  

ACI 


 �39�n  

kZ 2  0,065, 0,0053 0,12, 0,009 0,045, 0,0035 0,067, 0,0054 

kZ 4  3,24, 0,19 1,38, 0,073 4,41, 0,42 2,43, 0,038 

 

The data analysis revealed the following differences between the set of 

objective parameters that characterize the maps of SCP-modulus of 

polarization-inhomogeneous images of both types myocardium histological 

sections: 

�� kZ 2� = 1.45 � 1.52 times; kZ 4�  = 1.82 � 2.43 times; 
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These data were obtained for the SCP phase distributions: 

�� kZ 2�  = 1.34 � 1.61 times; kZ 4�  = 1.89 � 2.37 times; 

 

4.4.6. Comparative efficiency of the techniques of laser 

polarimetry and Stokes-correlometry of polarization-

inhomogeneous images of histological sections  

The Stokes-correlometry method of SCP modulus 
 �yxSi ��� ;4;3  and phase 


 �
 �yxSArg i ��� ;4;3  distributions of polarization-inhomogeneous images was 

compared with the that of polarization mapping of distributions of the values of 

azimuth and ellipticity of the corresponding microscopic images of histological 

sections of myocardium (Table 4.4.3). 

For the possible clinical application of both methods the following was 

determined for each group of samples [32-38] traditional for probative 

medicine operational characteristics - sensitivity ( %100
ba

a
Se

�
� ), specificity 

( %100
dc

c
Sp

�
� ) and balanced accuracy (

2

SpSe
Ac

�
� ), where a  and b  are the 

number of correct and wrong diagnoses within group 2; c  and d  � the same 

within group 1. 

 

Table 4.4.3. Accuracy of the methods of Stokes-correlometry and laser 

polarimetry of myocardium tissue in the differential diagnostics of pathologies 

Parameters ,%Ac  

3S  4S  3ArgS  4ArgS  
 �yx,�  
 �yx,�  

kZ 2  84 81 86 87 69 74 

kZ 4  92 94 95 96 84 81 
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4.4.7. Conclusion 

A new method of polarization - correlometry � determination of the 

coordinate distributions of the modulus and phase of "two-point" Stokes-vector 

parameters of polarization-inhomogeneous images of histological sections of 

biological tissues of myocardium is suggested and analytically substantiated. 

Within the correlation analysis the objective criteria characterizing the SCP-maps 

of polarization- inhomogeneous microscopic images of two groups (IHD-ACI) 

of samples of biological tissues of myocardium with the structured collagen 

birefringent fibrillar networks are determined. 

The comparative analysis of the objective correlation analysis of distributions of 

polarization "single-point" azimuth and ellipticity and "two-point" Stokes-vector 

parameters of polarization-inhomogeneous images of histological sections under 

study demonstrated the excellent accuracy ( %90FAc ) of differential diagnostics 

of changes in optical anisotropy of myocardium by the polarization - 

correlometry method. 
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